Copied to
clipboard

G = C23×C3⋊C8order 192 = 26·3

Direct product of C23 and C3⋊C8

direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: C23×C3⋊C8, C12.73C24, C24.8Dic3, C32(C23×C8), C62(C22×C8), (C22×C6)⋊5C8, C6.40(C23×C4), (C23×C4).20S3, (C23×C6).10C4, C4.72(S3×C23), (C23×C12).20C2, (C22×C12).34C4, (C22×C4).487D6, C2.1(C23×Dic3), C12.179(C22×C4), (C2×C12).883C23, C4.37(C22×Dic3), C23.48(C2×Dic3), (C22×C4).24Dic3, (C22×C12).568C22, C22.27(C22×Dic3), (C2×C6)⋊9(C2×C8), (C2×C12).321(C2×C4), (C2×C4).826(C22×S3), (C2×C6).204(C22×C4), (C22×C6).139(C2×C4), (C2×C4).105(C2×Dic3), SmallGroup(192,1339)

Series: Derived Chief Lower central Upper central

C1C3 — C23×C3⋊C8
C1C3C6C12C3⋊C8C2×C3⋊C8C22×C3⋊C8 — C23×C3⋊C8
C3 — C23×C3⋊C8
C1C23×C4

Generators and relations for C23×C3⋊C8
 G = < a,b,c,d,e | a2=b2=c2=d3=e8=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede-1=d-1 >

Subgroups: 440 in 338 conjugacy classes, 287 normal (11 characteristic)
C1, C2, C2, C3, C4, C4, C22, C6, C6, C8, C2×C4, C23, C12, C12, C2×C6, C2×C8, C22×C4, C24, C3⋊C8, C2×C12, C22×C6, C22×C8, C23×C4, C2×C3⋊C8, C22×C12, C23×C6, C23×C8, C22×C3⋊C8, C23×C12, C23×C3⋊C8
Quotients: C1, C2, C4, C22, S3, C8, C2×C4, C23, Dic3, D6, C2×C8, C22×C4, C24, C3⋊C8, C2×Dic3, C22×S3, C22×C8, C23×C4, C2×C3⋊C8, C22×Dic3, S3×C23, C23×C8, C22×C3⋊C8, C23×Dic3, C23×C3⋊C8

Smallest permutation representation of C23×C3⋊C8
Regular action on 192 points
Generators in S192
(1 15)(2 16)(3 9)(4 10)(5 11)(6 12)(7 13)(8 14)(17 57)(18 58)(19 59)(20 60)(21 61)(22 62)(23 63)(24 64)(25 133)(26 134)(27 135)(28 136)(29 129)(30 130)(31 131)(32 132)(33 182)(34 183)(35 184)(36 177)(37 178)(38 179)(39 180)(40 181)(41 71)(42 72)(43 65)(44 66)(45 67)(46 68)(47 69)(48 70)(49 101)(50 102)(51 103)(52 104)(53 97)(54 98)(55 99)(56 100)(73 121)(74 122)(75 123)(76 124)(77 125)(78 126)(79 127)(80 128)(81 96)(82 89)(83 90)(84 91)(85 92)(86 93)(87 94)(88 95)(105 187)(106 188)(107 189)(108 190)(109 191)(110 192)(111 185)(112 186)(113 156)(114 157)(115 158)(116 159)(117 160)(118 153)(119 154)(120 155)(137 175)(138 176)(139 169)(140 170)(141 171)(142 172)(143 173)(144 174)(145 162)(146 163)(147 164)(148 165)(149 166)(150 167)(151 168)(152 161)
(1 43)(2 44)(3 45)(4 46)(5 47)(6 48)(7 41)(8 42)(9 67)(10 68)(11 69)(12 70)(13 71)(14 72)(15 65)(16 66)(17 149)(18 150)(19 151)(20 152)(21 145)(22 146)(23 147)(24 148)(25 109)(26 110)(27 111)(28 112)(29 105)(30 106)(31 107)(32 108)(33 79)(34 80)(35 73)(36 74)(37 75)(38 76)(39 77)(40 78)(49 156)(50 157)(51 158)(52 159)(53 160)(54 153)(55 154)(56 155)(57 166)(58 167)(59 168)(60 161)(61 162)(62 163)(63 164)(64 165)(81 142)(82 143)(83 144)(84 137)(85 138)(86 139)(87 140)(88 141)(89 173)(90 174)(91 175)(92 176)(93 169)(94 170)(95 171)(96 172)(97 117)(98 118)(99 119)(100 120)(101 113)(102 114)(103 115)(104 116)(121 184)(122 177)(123 178)(124 179)(125 180)(126 181)(127 182)(128 183)(129 187)(130 188)(131 189)(132 190)(133 191)(134 192)(135 185)(136 186)
(1 173)(2 174)(3 175)(4 176)(5 169)(6 170)(7 171)(8 172)(9 137)(10 138)(11 139)(12 140)(13 141)(14 142)(15 143)(16 144)(17 132)(18 133)(19 134)(20 135)(21 136)(22 129)(23 130)(24 131)(25 58)(26 59)(27 60)(28 61)(29 62)(30 63)(31 64)(32 57)(33 158)(34 159)(35 160)(36 153)(37 154)(38 155)(39 156)(40 157)(41 95)(42 96)(43 89)(44 90)(45 91)(46 92)(47 93)(48 94)(49 77)(50 78)(51 79)(52 80)(53 73)(54 74)(55 75)(56 76)(65 82)(66 83)(67 84)(68 85)(69 86)(70 87)(71 88)(72 81)(97 121)(98 122)(99 123)(100 124)(101 125)(102 126)(103 127)(104 128)(105 163)(106 164)(107 165)(108 166)(109 167)(110 168)(111 161)(112 162)(113 180)(114 181)(115 182)(116 183)(117 184)(118 177)(119 178)(120 179)(145 186)(146 187)(147 188)(148 189)(149 190)(150 191)(151 192)(152 185)
(1 51 29)(2 30 52)(3 53 31)(4 32 54)(5 55 25)(6 26 56)(7 49 27)(8 28 50)(9 97 131)(10 132 98)(11 99 133)(12 134 100)(13 101 135)(14 136 102)(15 103 129)(16 130 104)(17 122 138)(18 139 123)(19 124 140)(20 141 125)(21 126 142)(22 143 127)(23 128 144)(24 137 121)(33 163 89)(34 90 164)(35 165 91)(36 92 166)(37 167 93)(38 94 168)(39 161 95)(40 96 162)(41 156 111)(42 112 157)(43 158 105)(44 106 159)(45 160 107)(46 108 153)(47 154 109)(48 110 155)(57 74 176)(58 169 75)(59 76 170)(60 171 77)(61 78 172)(62 173 79)(63 80 174)(64 175 73)(65 115 187)(66 188 116)(67 117 189)(68 190 118)(69 119 191)(70 192 120)(71 113 185)(72 186 114)(81 145 181)(82 182 146)(83 147 183)(84 184 148)(85 149 177)(86 178 150)(87 151 179)(88 180 152)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136)(137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152)(153 154 155 156 157 158 159 160)(161 162 163 164 165 166 167 168)(169 170 171 172 173 174 175 176)(177 178 179 180 181 182 183 184)(185 186 187 188 189 190 191 192)

G:=sub<Sym(192)| (1,15)(2,16)(3,9)(4,10)(5,11)(6,12)(7,13)(8,14)(17,57)(18,58)(19,59)(20,60)(21,61)(22,62)(23,63)(24,64)(25,133)(26,134)(27,135)(28,136)(29,129)(30,130)(31,131)(32,132)(33,182)(34,183)(35,184)(36,177)(37,178)(38,179)(39,180)(40,181)(41,71)(42,72)(43,65)(44,66)(45,67)(46,68)(47,69)(48,70)(49,101)(50,102)(51,103)(52,104)(53,97)(54,98)(55,99)(56,100)(73,121)(74,122)(75,123)(76,124)(77,125)(78,126)(79,127)(80,128)(81,96)(82,89)(83,90)(84,91)(85,92)(86,93)(87,94)(88,95)(105,187)(106,188)(107,189)(108,190)(109,191)(110,192)(111,185)(112,186)(113,156)(114,157)(115,158)(116,159)(117,160)(118,153)(119,154)(120,155)(137,175)(138,176)(139,169)(140,170)(141,171)(142,172)(143,173)(144,174)(145,162)(146,163)(147,164)(148,165)(149,166)(150,167)(151,168)(152,161), (1,43)(2,44)(3,45)(4,46)(5,47)(6,48)(7,41)(8,42)(9,67)(10,68)(11,69)(12,70)(13,71)(14,72)(15,65)(16,66)(17,149)(18,150)(19,151)(20,152)(21,145)(22,146)(23,147)(24,148)(25,109)(26,110)(27,111)(28,112)(29,105)(30,106)(31,107)(32,108)(33,79)(34,80)(35,73)(36,74)(37,75)(38,76)(39,77)(40,78)(49,156)(50,157)(51,158)(52,159)(53,160)(54,153)(55,154)(56,155)(57,166)(58,167)(59,168)(60,161)(61,162)(62,163)(63,164)(64,165)(81,142)(82,143)(83,144)(84,137)(85,138)(86,139)(87,140)(88,141)(89,173)(90,174)(91,175)(92,176)(93,169)(94,170)(95,171)(96,172)(97,117)(98,118)(99,119)(100,120)(101,113)(102,114)(103,115)(104,116)(121,184)(122,177)(123,178)(124,179)(125,180)(126,181)(127,182)(128,183)(129,187)(130,188)(131,189)(132,190)(133,191)(134,192)(135,185)(136,186), (1,173)(2,174)(3,175)(4,176)(5,169)(6,170)(7,171)(8,172)(9,137)(10,138)(11,139)(12,140)(13,141)(14,142)(15,143)(16,144)(17,132)(18,133)(19,134)(20,135)(21,136)(22,129)(23,130)(24,131)(25,58)(26,59)(27,60)(28,61)(29,62)(30,63)(31,64)(32,57)(33,158)(34,159)(35,160)(36,153)(37,154)(38,155)(39,156)(40,157)(41,95)(42,96)(43,89)(44,90)(45,91)(46,92)(47,93)(48,94)(49,77)(50,78)(51,79)(52,80)(53,73)(54,74)(55,75)(56,76)(65,82)(66,83)(67,84)(68,85)(69,86)(70,87)(71,88)(72,81)(97,121)(98,122)(99,123)(100,124)(101,125)(102,126)(103,127)(104,128)(105,163)(106,164)(107,165)(108,166)(109,167)(110,168)(111,161)(112,162)(113,180)(114,181)(115,182)(116,183)(117,184)(118,177)(119,178)(120,179)(145,186)(146,187)(147,188)(148,189)(149,190)(150,191)(151,192)(152,185), (1,51,29)(2,30,52)(3,53,31)(4,32,54)(5,55,25)(6,26,56)(7,49,27)(8,28,50)(9,97,131)(10,132,98)(11,99,133)(12,134,100)(13,101,135)(14,136,102)(15,103,129)(16,130,104)(17,122,138)(18,139,123)(19,124,140)(20,141,125)(21,126,142)(22,143,127)(23,128,144)(24,137,121)(33,163,89)(34,90,164)(35,165,91)(36,92,166)(37,167,93)(38,94,168)(39,161,95)(40,96,162)(41,156,111)(42,112,157)(43,158,105)(44,106,159)(45,160,107)(46,108,153)(47,154,109)(48,110,155)(57,74,176)(58,169,75)(59,76,170)(60,171,77)(61,78,172)(62,173,79)(63,80,174)(64,175,73)(65,115,187)(66,188,116)(67,117,189)(68,190,118)(69,119,191)(70,192,120)(71,113,185)(72,186,114)(81,145,181)(82,182,146)(83,147,183)(84,184,148)(85,149,177)(86,178,150)(87,151,179)(88,180,152), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160)(161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176)(177,178,179,180,181,182,183,184)(185,186,187,188,189,190,191,192)>;

G:=Group( (1,15)(2,16)(3,9)(4,10)(5,11)(6,12)(7,13)(8,14)(17,57)(18,58)(19,59)(20,60)(21,61)(22,62)(23,63)(24,64)(25,133)(26,134)(27,135)(28,136)(29,129)(30,130)(31,131)(32,132)(33,182)(34,183)(35,184)(36,177)(37,178)(38,179)(39,180)(40,181)(41,71)(42,72)(43,65)(44,66)(45,67)(46,68)(47,69)(48,70)(49,101)(50,102)(51,103)(52,104)(53,97)(54,98)(55,99)(56,100)(73,121)(74,122)(75,123)(76,124)(77,125)(78,126)(79,127)(80,128)(81,96)(82,89)(83,90)(84,91)(85,92)(86,93)(87,94)(88,95)(105,187)(106,188)(107,189)(108,190)(109,191)(110,192)(111,185)(112,186)(113,156)(114,157)(115,158)(116,159)(117,160)(118,153)(119,154)(120,155)(137,175)(138,176)(139,169)(140,170)(141,171)(142,172)(143,173)(144,174)(145,162)(146,163)(147,164)(148,165)(149,166)(150,167)(151,168)(152,161), (1,43)(2,44)(3,45)(4,46)(5,47)(6,48)(7,41)(8,42)(9,67)(10,68)(11,69)(12,70)(13,71)(14,72)(15,65)(16,66)(17,149)(18,150)(19,151)(20,152)(21,145)(22,146)(23,147)(24,148)(25,109)(26,110)(27,111)(28,112)(29,105)(30,106)(31,107)(32,108)(33,79)(34,80)(35,73)(36,74)(37,75)(38,76)(39,77)(40,78)(49,156)(50,157)(51,158)(52,159)(53,160)(54,153)(55,154)(56,155)(57,166)(58,167)(59,168)(60,161)(61,162)(62,163)(63,164)(64,165)(81,142)(82,143)(83,144)(84,137)(85,138)(86,139)(87,140)(88,141)(89,173)(90,174)(91,175)(92,176)(93,169)(94,170)(95,171)(96,172)(97,117)(98,118)(99,119)(100,120)(101,113)(102,114)(103,115)(104,116)(121,184)(122,177)(123,178)(124,179)(125,180)(126,181)(127,182)(128,183)(129,187)(130,188)(131,189)(132,190)(133,191)(134,192)(135,185)(136,186), (1,173)(2,174)(3,175)(4,176)(5,169)(6,170)(7,171)(8,172)(9,137)(10,138)(11,139)(12,140)(13,141)(14,142)(15,143)(16,144)(17,132)(18,133)(19,134)(20,135)(21,136)(22,129)(23,130)(24,131)(25,58)(26,59)(27,60)(28,61)(29,62)(30,63)(31,64)(32,57)(33,158)(34,159)(35,160)(36,153)(37,154)(38,155)(39,156)(40,157)(41,95)(42,96)(43,89)(44,90)(45,91)(46,92)(47,93)(48,94)(49,77)(50,78)(51,79)(52,80)(53,73)(54,74)(55,75)(56,76)(65,82)(66,83)(67,84)(68,85)(69,86)(70,87)(71,88)(72,81)(97,121)(98,122)(99,123)(100,124)(101,125)(102,126)(103,127)(104,128)(105,163)(106,164)(107,165)(108,166)(109,167)(110,168)(111,161)(112,162)(113,180)(114,181)(115,182)(116,183)(117,184)(118,177)(119,178)(120,179)(145,186)(146,187)(147,188)(148,189)(149,190)(150,191)(151,192)(152,185), (1,51,29)(2,30,52)(3,53,31)(4,32,54)(5,55,25)(6,26,56)(7,49,27)(8,28,50)(9,97,131)(10,132,98)(11,99,133)(12,134,100)(13,101,135)(14,136,102)(15,103,129)(16,130,104)(17,122,138)(18,139,123)(19,124,140)(20,141,125)(21,126,142)(22,143,127)(23,128,144)(24,137,121)(33,163,89)(34,90,164)(35,165,91)(36,92,166)(37,167,93)(38,94,168)(39,161,95)(40,96,162)(41,156,111)(42,112,157)(43,158,105)(44,106,159)(45,160,107)(46,108,153)(47,154,109)(48,110,155)(57,74,176)(58,169,75)(59,76,170)(60,171,77)(61,78,172)(62,173,79)(63,80,174)(64,175,73)(65,115,187)(66,188,116)(67,117,189)(68,190,118)(69,119,191)(70,192,120)(71,113,185)(72,186,114)(81,145,181)(82,182,146)(83,147,183)(84,184,148)(85,149,177)(86,178,150)(87,151,179)(88,180,152), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160)(161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176)(177,178,179,180,181,182,183,184)(185,186,187,188,189,190,191,192) );

G=PermutationGroup([[(1,15),(2,16),(3,9),(4,10),(5,11),(6,12),(7,13),(8,14),(17,57),(18,58),(19,59),(20,60),(21,61),(22,62),(23,63),(24,64),(25,133),(26,134),(27,135),(28,136),(29,129),(30,130),(31,131),(32,132),(33,182),(34,183),(35,184),(36,177),(37,178),(38,179),(39,180),(40,181),(41,71),(42,72),(43,65),(44,66),(45,67),(46,68),(47,69),(48,70),(49,101),(50,102),(51,103),(52,104),(53,97),(54,98),(55,99),(56,100),(73,121),(74,122),(75,123),(76,124),(77,125),(78,126),(79,127),(80,128),(81,96),(82,89),(83,90),(84,91),(85,92),(86,93),(87,94),(88,95),(105,187),(106,188),(107,189),(108,190),(109,191),(110,192),(111,185),(112,186),(113,156),(114,157),(115,158),(116,159),(117,160),(118,153),(119,154),(120,155),(137,175),(138,176),(139,169),(140,170),(141,171),(142,172),(143,173),(144,174),(145,162),(146,163),(147,164),(148,165),(149,166),(150,167),(151,168),(152,161)], [(1,43),(2,44),(3,45),(4,46),(5,47),(6,48),(7,41),(8,42),(9,67),(10,68),(11,69),(12,70),(13,71),(14,72),(15,65),(16,66),(17,149),(18,150),(19,151),(20,152),(21,145),(22,146),(23,147),(24,148),(25,109),(26,110),(27,111),(28,112),(29,105),(30,106),(31,107),(32,108),(33,79),(34,80),(35,73),(36,74),(37,75),(38,76),(39,77),(40,78),(49,156),(50,157),(51,158),(52,159),(53,160),(54,153),(55,154),(56,155),(57,166),(58,167),(59,168),(60,161),(61,162),(62,163),(63,164),(64,165),(81,142),(82,143),(83,144),(84,137),(85,138),(86,139),(87,140),(88,141),(89,173),(90,174),(91,175),(92,176),(93,169),(94,170),(95,171),(96,172),(97,117),(98,118),(99,119),(100,120),(101,113),(102,114),(103,115),(104,116),(121,184),(122,177),(123,178),(124,179),(125,180),(126,181),(127,182),(128,183),(129,187),(130,188),(131,189),(132,190),(133,191),(134,192),(135,185),(136,186)], [(1,173),(2,174),(3,175),(4,176),(5,169),(6,170),(7,171),(8,172),(9,137),(10,138),(11,139),(12,140),(13,141),(14,142),(15,143),(16,144),(17,132),(18,133),(19,134),(20,135),(21,136),(22,129),(23,130),(24,131),(25,58),(26,59),(27,60),(28,61),(29,62),(30,63),(31,64),(32,57),(33,158),(34,159),(35,160),(36,153),(37,154),(38,155),(39,156),(40,157),(41,95),(42,96),(43,89),(44,90),(45,91),(46,92),(47,93),(48,94),(49,77),(50,78),(51,79),(52,80),(53,73),(54,74),(55,75),(56,76),(65,82),(66,83),(67,84),(68,85),(69,86),(70,87),(71,88),(72,81),(97,121),(98,122),(99,123),(100,124),(101,125),(102,126),(103,127),(104,128),(105,163),(106,164),(107,165),(108,166),(109,167),(110,168),(111,161),(112,162),(113,180),(114,181),(115,182),(116,183),(117,184),(118,177),(119,178),(120,179),(145,186),(146,187),(147,188),(148,189),(149,190),(150,191),(151,192),(152,185)], [(1,51,29),(2,30,52),(3,53,31),(4,32,54),(5,55,25),(6,26,56),(7,49,27),(8,28,50),(9,97,131),(10,132,98),(11,99,133),(12,134,100),(13,101,135),(14,136,102),(15,103,129),(16,130,104),(17,122,138),(18,139,123),(19,124,140),(20,141,125),(21,126,142),(22,143,127),(23,128,144),(24,137,121),(33,163,89),(34,90,164),(35,165,91),(36,92,166),(37,167,93),(38,94,168),(39,161,95),(40,96,162),(41,156,111),(42,112,157),(43,158,105),(44,106,159),(45,160,107),(46,108,153),(47,154,109),(48,110,155),(57,74,176),(58,169,75),(59,76,170),(60,171,77),(61,78,172),(62,173,79),(63,80,174),(64,175,73),(65,115,187),(66,188,116),(67,117,189),(68,190,118),(69,119,191),(70,192,120),(71,113,185),(72,186,114),(81,145,181),(82,182,146),(83,147,183),(84,184,148),(85,149,177),(86,178,150),(87,151,179),(88,180,152)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136),(137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152),(153,154,155,156,157,158,159,160),(161,162,163,164,165,166,167,168),(169,170,171,172,173,174,175,176),(177,178,179,180,181,182,183,184),(185,186,187,188,189,190,191,192)]])

96 conjugacy classes

class 1 2A···2O 3 4A···4P6A···6O8A···8AF12A···12P
order12···234···46···68···812···12
size11···121···12···23···32···2

96 irreducible representations

dim11111122222
type++++-+-
imageC1C2C2C4C4C8S3Dic3D6Dic3C3⋊C8
kernelC23×C3⋊C8C22×C3⋊C8C23×C12C22×C12C23×C6C22×C6C23×C4C22×C4C22×C4C24C23
# reps114114232177116

Matrix representation of C23×C3⋊C8 in GL5(𝔽73)

720000
072000
007200
00010
00001
,
720000
01000
007200
000720
000072
,
720000
072000
007200
000720
000072
,
10000
01000
00100
000072
000172
,
510000
027000
007200
0002241
0006351

G:=sub<GL(5,GF(73))| [72,0,0,0,0,0,72,0,0,0,0,0,72,0,0,0,0,0,1,0,0,0,0,0,1],[72,0,0,0,0,0,1,0,0,0,0,0,72,0,0,0,0,0,72,0,0,0,0,0,72],[72,0,0,0,0,0,72,0,0,0,0,0,72,0,0,0,0,0,72,0,0,0,0,0,72],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,72,72],[51,0,0,0,0,0,27,0,0,0,0,0,72,0,0,0,0,0,22,63,0,0,0,41,51] >;

C23×C3⋊C8 in GAP, Magma, Sage, TeX

C_2^3\times C_3\rtimes C_8
% in TeX

G:=Group("C2^3xC3:C8");
// GroupNames label

G:=SmallGroup(192,1339);
// by ID

G=gap.SmallGroup(192,1339);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,112,102,6278]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^3=e^8=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^-1>;
// generators/relations

׿
×
𝔽